J=Povo= Py¥y-

(This relation can be verified by integrating the equa-
tions of continuity and motion through a steady shock
transition and noting that it is the stress that enters in-
to the equation of motion. Nothing in these two mechan-
ical relations requires an assumption of thermodynamic
equilibrium.) This relation allows us to write (18) as

6=(j2+dP/dV)(V - V,)V. (20)

Returning to inequality (11), and using the expres-
sions for v, k, and 6 from (14), (17), and (20), we have

WV -V,)[j2+dP/dV + (dT/dv)lds/av)ly, =0, (21)

where, as previously stated, the derivatives are evalu-
ated on the equilibrium surface along the path repre-
senting the projection of the real path.

There are four cases to consider depending on
whether the shock is a compression or a rarefaction
shock, and depending whether the reference equilibrium
state is ahead of or behind the shock.

For compression shocks we have I;<0, and,
G) V,=v,, V>V, ,
(ii) V=V, V<V,;
while for rarefaction shocks, I;>0, and,
(iii) V,=Vv,, V<V,,
(iv) V, =V, V>V,.

With respect to the sign of the bracketed quantity in
(21) therefore, cases (i) and (iii) referring to the head
of either type of shock are equivalent, as are cases
(ii) and (iv) referring to the foot of the shock. Thus,

72+dP/dV +(dT/dV)(ds/dV)=0 (head), (22a)
=0 (foot). (22b)
The directional derivatives of relation (21) can be ex-
pressed in terms of the derivatives of (3) and hence in
terms of properties of the equilibrium surface by the
identities,
ds/dV=(8s/8V)p+(3s/8P), (dP/dV)
=(8P/8T), —(8V/0T), (dP/aV)
=(8v/8T), [(8P/8V)s —dP/aV]
and
dT/dv=(8T/8V),+(8T/ 8s)y(ds/dV)
=(87/8V), +(8T/8s),(8V/8T)[(8P/8V), —dP/aV].
Substituting into (21) gives
V(V =V, {72+ (8P/8V), + (8V/8T)% (8T/ 8s)y
[(ep/8V), -dP/dV]?} =0. (23)

Although we make no direct use of it, we note that
(23) can be written in a more symmetric way by use of
the thermodynamic identity

(av/eT)2(8T/0s)y=[(0P/8V), —(8P/8V)]™.
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Equation (23) then becomes
WV = V) {[52+ (aP/oV),][(6F/8V), — (8P/8V),]
+[(8P/8V), —aP/aV]?}y, =0

or
V(V - VM52 + (8P/8V),][ 12+ (8P/ V)5 ] - 2 %+ (8P/8V),]
x[j%+dP/av]+[j®+dp/av]}, =0 (24)

This relation is equivalent to (21) and is an expression
of the second law, (11), to the first nonvanishing terms.

From (23) it is already clear that at the head of the
shock, V(V -V,)=0, we must have

j2+(aP/8V),=0
or, in view of (3a),
-A8v/8p), = 1. (25)

It is readily shown, however, that M%=— %(8V/aP),
and therefore, (25) gives

Mi=1, My=1 (26)
as expected.

Examination of (23) or (24), at the foot of the shock,
however, does not lead to the other expected inequality,
i.e., M3=1. Moreover, as Truesdell notes, invoking
only the inequality (11), admits the possibility that
either contribution to the entropy production could by
itself be negative if it were compensated for by suf-
ficient entropy production by the other term.” This
would admit such peculiar circumstances as negative
dissipation accompanying a large heat flux. Conversely,
sufficiently large dissipation could be accompanied by
heat flow in the same direction as the temperature
gradient, i.e., heat could flow uphill.

It will now be assumed that each term of the inequality
(11) must be positive. This appears justifiable, for
example, by noting that according to the usual classical
assumption (Fourier conduction law)

h="'k7’

where k is a positive coefficient. Under this law, the
second term of the inequality (11) becomes

—hey=k(y.y)>0.

Moreover, it is usually assumed, in accordance with
the Navier-Stokes equations (Ref. 4, p. 337), that the
dissipative stress, o - P, is, for one-dimensional flow,

0 - P=-[(4/3)n+&](dv/dx)
= - [(4/3)n+£]pY,

where the viscosity coefficients, » and &, are both nega-
tive. From Eq. (10), it then follows that under this
assumption, the first term of the inequality (11) will be,

p6=[(4/3)m+£]p2V2>0.

These assumptions concerning the constitutive relations
can be considered to be empirical laws, or to be simply
the first-order terms in a series expansion valid for
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small temperature or velocity gradients. The princi-
pal significance for our purposes is that there are no
cross-coupling terms that could cause either term of
inequality (11) to make a negative contribution to the
entropy production.

In place of inequality (23), we now have two inequal-
ities,

WV - V,)[2+dP/av]=0
and
WV -V,)[(er/8V), —~dP/dV][(8P/8V)y —dP/dV]= 0. (27b)
First considering the head of the shock, for which
WV -V,)=0, we have
j2+dP/dV=0; dP/dV= -j2, (28a)
[(ap/8V), —dP/dV][(8P/8V), —dP/dV]=0. (28b)

The latter inequality requires that the slope, dP/dV,
be intermediate between the isentropic and isothermal
derivatives, while (28a) requires that it be less than
the slope of the Rayleigh line. Consequently, the more
restrictive of the inequalities

(27a)

(oP/8V), =dP/av = {

-j2
(ap/8V), ()
obtains.

If we consider the foot of the shock, V(V - V) =0, we
have, in place of (28),

j2+dP/dV =0 (30)
and

[(er/8V), —-aP/dV][(8P/ 8V)y —dP/dV]=0. (31)
These have the solutions,

dP/dV = -j? (32)
and either (i)

dP/dv = (8P/8V), , (33)

dp/av =(8P/8V);,
or, (ii)

dP/dv=(8P/aV),, (34)
dP/dV = (8P/8V)y .

The two solutions, (33) and (34), are seen to exclude
the function P(V) from the region between the isentrope
and isotherm. If we assume (34) can be correct, how-
ever, and compare two hypothetical materials which
differ only in the coefficient of thermal conduction, Z,
then the effect of heat flow would be to increase the
mechanical dissipation. This is contrary to the Le
Chatelier—Braun principle which states that secondary
processes induced as a result of a primary process will
act in a direction to reduce the primary thermodynamic
stress difference.? Consequently, we take (33) to be the
correct result, and it then follows that

-j*=dP/av= (aP/8V), (35)

and, further,
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-j¥ov/eP),=Miz=1, My=1. (36)
This is the other result expected.

The restrictions on the slope dP/dV specified by (35)
and by (29) are shown in Fig. 2.

It is clear from the diagram that an alternate argu-
ment for the exclusion of the solution (34) can be based
on the continuity of the curve, P(V). For weak shocks
state 1 approaches state 0 and s, approaches s, (the so-
called weak shock approxima.i:ion.)m However, since
P(V) is excluded from the region between sy and T, and
is confined between s; and 7y, P(V) can be continuous
only under the conditions shown, i.e., only if (34) is
excluded.

It is interesting to note that the result (29) requires
that, whenever the isotherm falls below the Rayleigh
line at the head of the shock, i.e.,

(8pP/8V)p < =52,

then since dP/dV <(8P/8V),, it is necessary that some
dissipation occur to account for at least the difference
in stress between the isotherm and the Rayleigh line.
Thus, under these conditions it is not possible to as-
sume strictly nonviscous behavior no matter how con-
ductive the material,'* The converse is not true, how-
ever; there seem to be no restrictions that would rule
out nonconducting but viscous behavior as assumed by

STRESS OR PRESSURE

RAYLEIGH

STRESS OR PRESSURE

) (apravig] >-j
V,

FIG. 2. Allowed regions for the slope dP/dV in the stress-
volume plane fora compressive shock. Curves labeled sy and
T, are the isentrope and isotherm through the initial state and
those labeled s; and Ty are corresponding curves through the
final state. Curves labeled P are the projections of the path

on the equilibrium surface traced by a mass element traversing
the shock layer. The cross-hatched areas are the permissible
bounds for P. (a) 0P/8V)gly,<=d% (b) (0P/8V)zly, >=7".
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