
j=POVO=P1Vl· 

(This relation can be verified by integrating the equa
tions of continuity and motion through a steady shock 
transition and noting that it is the stress that enters in
to the equation of motion. Nothing in these two mechan
ical relations requires an assumption of thermodynamic 
equilibrium.) This relation allows us to write (18) as 

o=(j2+dP/dV)(V-Vr)V. (20) 

Returning to inequality (11), and using the expres
sions for ')I, h, and 0 from (14), (17), and (20), we have 

V(V - Vr )[j2+dP/dV + (dT/ dV)(ds/dV)]v/~: 0, (21). 

where, as previously stated, the derivatives are evalu
ated on the equilibrium surface along the path repre
senting the projection of the real path. 

There are four cases to consider depending on 
whether the shock is a compression or a rarefaction 
shock, and depending whether the reference equilibrium 
state is ahead of or behind the shock. 

For compression shocks we have V < 0, and, 

(i) Vr = V1, V> Vr , 

(ii)Vr=Vo, V<Vr ; 

while for rarefaction shocks, V> 0, and, 

(iii) Vr = V1, V < Vr , 

(iv) Vr = Vo, V> Vr • 

With respect to the sign of the bracketed quantity in 
(21) therefore, cases (i) and (iii) referring to the head 
of either type of shock are equivalent, as are cases 
(ii) and (iv) referring to the foot of the shock. Thus, 

j2+dP/dV+(dT/dV)(ds/dV):50 (head), (22a) 

2'! 0 (foot). (22b) 

The directional derivatives of relation (21) can be ex
pressed in terms of the derivatives of (3) and hence in 
terms of properties of the equilibrium surface by the 
identities, 

and 

ds/dV= (as/av)p + (as/ap)v (dP/dV) 

= (ap/aT)s - (av/aT)s (dP/dV) 

= (av/aT)s [(ap/av)s -dP/dV] 

dT/dV= (aT/av)s + (aT/as)v(ds/dV) 

= (aT/av)s + (aT/as)v(av/aT)s[(ap/aV)s - dP/dV]. 

Substituting into (21) gives 

V(V - vr}{l + (ap/av)s + (av /aT)~ (aT/as)v 

[(ap/av)s -dP/dV]2) ;;; 0. (23) 

Although we make no direct use of it, we note that 
(23) can be written in a more symmetric way by use of 
the thermodynamic identity 
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Equation (23) then becomes 

V(V - Vr){[j2+ (ap/av)s][(ap/aV)T - (ap/av)s] 

+ [(ap/av)s -dP/dV]2}vr ;;; 0 

or 

v(V - Vr){(j2+ (ap/av)s](j2 + (ap/avh]- 2[l+ (ap/av)s] 

x(j2+dP/dV]+(j2+dP/dV]~v ;:; 0. (24) 
r 

This relation is equivalent to (21) and is an expression 
of the second law, (11), to the first nonvanishing terms. 

From (23) it is already clear that at the head of the 
shock, V(V - V1):5 0, we must have 

j2+ (ap/av)s ;:; 0 

or, in view of (3a) , 

-l(av/ap)s ;:; 1. (25) 

It is readily shown, however, that M2 = -ita v/ap)s 
and therefore, (25) gives 

M~ ;:; 1, M 1 ;:;1 

as expected. 

(26) 

Examination of (23) or (24), at the foot of the shock, 
however, does not lead to the other expected inequality, 
i. e., M~ ;:; 1. Moreover, as Truesdell notes, invoking 
only the inequality (11), admits the possibility that 
either contribution to the entropy production could by 
itself be negative if it were compensated for by suf
ficient entropy production by the other term. 7 This 
would admit such peculiar circumstances as negative 
diSSipation accompanying a large heat flux. Conversely, 
sufficiently large dissipation could be accompanied by 
heat flow in the same direction as the temperature 
gradient, i. e., heat could flow uphill. 

It will now be assumed that each term of the inequality 
(11) must be positive. This appears justifiable, for 
example, by noting that according to the usual classical 
assumption (Fourier conduction law) 

h= - RY, 

where k is a positive coefficient. Under this law, the 
second term of the inequality (11) becomes 

- h • Y = k(y • y) > O. 

Moreover, it is usually assumed, in accordance with 
the Navier-stokes equations (Ref. 4, p. 337), that the 
dissipative stress, a - P, is, for one -dimensional flow, 

a - P= - [(4/3)n +~](dv/ dx) 

= - [(4/3)n+~]pV, 
where the viscosity coefficients, n and ~, are both nega
tive. From Eq. (10), it then follows that under this 
assumption, the first term of the inequality (11) will be, 

pO = [(4/3)n+~]p2V2 >0. 

These assumptions concerning the constitutive relations 
can be considered to be empirical laws, or to be simply 
the first-order terms in a series expansion valid for 
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small temperature or velocity gradients. The princi
pal significance for our purposes is that there are no 
cross-coupling terms -that could cause either term of 
inequality (11) to make a negative contribution to the 
entropy production. 

In place of inequality (23), we now have two inequal
ities, 

(27a) 

and 

V(V - vr)[(ap/av)s -dP/dv][(ap/av)T -dP/dV] ~ O. (27b) 

First considering the head of the shock, for which 

v(V - Vr) ~ O, we have 

j2+dP/dV~0; dP/dV ~ _j2, (28a) 

[(ap/av)s -dP/dV][(ap/avh -dP/dV] ~ O. (28b) 

The latter inequality requires that the slope, dP/dV, 
be intermediate between the isentropic and isothermal 
derivatives, while (28a) requires that it be less than 
the slope of the Rayleigh line. Consequently, the more 
restrictive of the inequalities 

(ap/aV)s ~ dP/dV ~ {<1p~aV)T 
obtains. 

(29) 

If we consider the foot of the shock, V( V - Yo) ~ 0, we 
have, in place of (28), 

j2+dP/dV~0 (30) 

and 

[(ap/av) .. -dP/dv][(ap/ aV)T -dP/dV] ~ O. (31) 

These have the solutions, 

dP/dV~ _j2 

and either (i) 

dP/dV~ (ap/aV) .. , 

dP/dV ~(ap/aV)T' 

or, (ii) 

dP/dV~ (ap/aV) .. , 

dP/dV;:;. (ap/aV)T • 

(32) 

(33) 

(34) 

The two solutions, (33) and (34), are seen to exclude 
the function 1'( V) from the region between the isentrope 
and isotherm. If we assume (34) can be correct, how
ever, and compare two hypothetical materials which 
differ only in the coefficient of thermal conduction, k, 
then the effect of heat flow would be to increase the 
mechanical diSSipation. This is contrary to the Le 
Chatelier-Braun prinCiple which states that secondary 
processes induced as a result of a primary process will 
act in a direction to reduce the primary thermodynamic 
stress difference. 9 Consequently, we take (33) to be the 
correct result, and it then follows that 

-l~dP/dV~ (ap/aV) .. 

and, further, 
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(35) 

(36) 

This is the other result expected. 

The restrictions on the slope dP/ dV specified by (35) 
and by (29) are shown in Fig. 2. 

It is clear from the diagram that an alternate argu
ment for the exclusion of the solution (34) can be based 
on the continuity of the curve, P(V). For weak shocks 
state 1 approaches state 0 and Sl approaches So (the so
called weak shock approximation. )10 However, since 
1'(V) is excluded from the region between So and To and 
is confined between Sl and T l , P(V) can be continuous 
only under the conditions shown, i. e., only if (34) is 
excluded. 

It is interesting to note that the result (29) requires 
that, whenever the isotherm falls below the Rayleigh 
line at the head of the shock, i. e. , 

(ap/av)T < -l,. 
then since dP/dV«ap/aV)T, it is necessary that some 
diSSipation occur to account for at least the difference 
in stress between the isotherm and the Rayleigh line. 
Thus, under these conditions it is not possible to as
sume strictly nonviscous behavior no matter how con
ductive the material. 11 The converse is not true, how
ever; there seem to be no restrictions that would rule 
out nonconducting but viscous behavior as assumed by 
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FIG. 2. Allowed regions for the slope dPjdV in the stress
volume plane for a compressive shock. Curves labeled 50 and 
To are the isentrope and isotherm through the initial state and 
those labeled 51 and Tl are corresponding curves through the 
final state. Curves labeled P are the projections of the path 
on the equilibrium surface traced by a mass element traversing 
the shock layer. The cross-hatched areas are the permissible 
bounds for P. (a) (8Pj8V)Tlv < -.r; (b) (8Pj8Vhlv > -l. 

1 1 

G. R. Fowles 779 


